
Segmented Telemetry Data Filter
Administrator's manual

Eduard Tibet
28.03.2022

Table of Contents
1. Introduction .. 1

1.1. Scope of this document ... 1
1.2. Document structure .. 1

2. Description of the STDF ... 2
2.1. Brief description of the STDF .. 2
2.2. Overall design of STDF ... 2

3. Installation of the software .. 4
3.1. System requirements ... 4
3.2. User qualication ... 4
3.3. Installation process of components .. 4

4. Authoring ltering rules .. 7
5. Using and verifying ltered data .. 8
6. Troubleshooting ... 8

6.1. Problem: no connection from a lter node to a coordinator .. 8
6.2. Problem: ltering node doesn't receive ltering rules ... 8
6.3. Problem: ltering node doesn't receive data ... 9
6.4. Problem: loadbalancer doesn't receive any data ... 9
6.5. Problem: Filter produces incorrect results .. 9

A. Technology stack behind this sample document ... 9
B. License .. 10

1. Introduction

1.1. Scope of this document

This is a complete administrator's manual of the Segmented Telemetry Data Filter (STDF) software. It
describes in a brief what STDF is proposed for, its overall design, what each component is indented
for. Also this manual includes a full information about an installation process and usage of STDF.
The theory and principles of data ltering, explanation of the Erlang language syntax (used for data
ltering) are completely out of scope of this manual.

1.2. Document structure

This document includes a following parts:

• Introduction - current section.

• Description of the STDF - a description of the software's overall design, features and functionality.

• Installation of the software - the information about system requirements and installation of the
software.

• Authoring ltering rules - current section describes, how to create and mastering ltering rules
required to be deployed into the one of the software component.

1

Segmented Telemetry Data Filter

• Using and verifying ltered data - section about customizing and ne tuning nal data.

• Troubleshooting - list of possible issues and ways to resolve them.

2. Description of the STDF

2.1. Brief description of the STDF

STDF is a data handling software designed to help in capturing high speed telemetry data. The purpose
of the STDF is to automatically and linearly scale processing capacity for such data. The STDF segments
data into smaller chunks and sends them through a load balancer to several servers that lter received
data. That way it is possible to:

• avoid using a single high-powered processing unit working with data;

• reduce power of any unit, used for processing;

• deploy the system with a great exibility and scalability, based on various initial requirements and/
or conditions.

2.2. Overall design of STDF

The system contains of several parts:

• coordinator component (node) - is used for smart management of the whole system;

• loadbalancer component (node) - is used for receiving raw data from external sources (i.e. sensors)
and transfer it further based on coordinator's directives;

• lter component(s)/node(s) - are used to process data received from the loadbalancer. Processing is
based on the current workload. If it exceeds the maximum, dened by a coordinator, data chunks
automatically migrate to other lter nodes, which free resources are enough to manipulate the data.
The number of lter components within installation varies and based on current performance needs.

In the heart of the STDF is a proprietary protocol that was developed by Teliota company. This protocol
can be used between components to coordinate data manipulation, calculation on individual lters,
running on each server, and data migration between lters.

The typical workow includes the following steps:

1. loadbalancer component receives all-raw data from external sources (i.e. sensors) and transmit it
further to lters based on coordinator's current workload rules and internal logic;

2. lter component receives an independent dataset from the loadbalancer and asks a cluster's
coordinator to supply a ltering rules;

3. coordinator provides a rules to the lter and then rules are applied on-the-y onto the incoming
data, received from the loadbalancer;

Each ltering component can talk to a coordinator component about the data it is processing or wishes
to process. The coordinator component steers the loadbalancer component what data a loadbalancer
should provide to which lter node.

2

Segmented Telemetry Data Filter

Figure 1. Overall design of STDF

If a lter component gets overloaded by the data, its tasks can be ooaded to another lter node. Due
to the nature of the workow, the algorithm assumes that:

• a sucient number of such redundant servers (lter modes) exists in the pool as during an overload
situation;

• the ooaded data is similar to the original data and can be ltered with same rules.

An ooaded lter node is, therefore, not "independent". It have to process the same data and
instructions as its peer until the moment an overload situation is resolved.

New processing (lter) nodes can be added into the processing cluster on the y by:

1. adding new server hardware;

2. installing the lter component software onto it;

3. conguring the coordinator server address.

The lter node will register itself to the coordinator and the coordinator will instruct the loadbalancer
to forward trac to this new node.

Telemetry data and lter operations are dened with a denition le that in turn is written in a
proprietary lter rule language. The language denes in details:

• what the incoming data is stands for;

• how the data may be aggregated and ltered out in case of outliers or unwanted values are found.

3

Segmented Telemetry Data Filter

The coordinator reads the lter language les and runs them on its own logic processing engine. This
engine is connected to all the ltering nodes, which receives processing instructions in the form of a
proprietary, compressed command protocol. The protocol is bidirectional:

• lter nodes and the loadbalancer inform the coordinator about data they receive and their status.

• coordinator instructs:

• loadbalancer - where to deploy initial raw-based data;

• lters - what data is and how that data should be manipulated over.

3. Installation of the software

3.1. System requirements
To successfully install and run STDF, your base hardware/software installation have to be complied
with the following requirements:

• Two (2) dedicated hardware servers for a coordinator and a loadbalancer components;

• no other application software (i.e. MTA, DB, etc.), except of an operating system and system utilities
should be installed on the above servers;

• required amount of servers that will be used as hosts for a ltering components (nodes);

• network connectivity with all sensors that gather information for your application - your rewall
rules should allow sensors to access the STDF cluster (loadbalancer component);

• network connectivity within all components of the STDF installation and data receivers beyond the
STDF deployment (DB or third-party application servers);

• any recent Linux distribution with a kernel 2.6.32 or later;

• standard (base) Linux utilities, including:

• tar - utility to work with .tar les;

• wget - utility to get packages from the distribution server;

• any console text editors to edit conguration les - i.e. vim, nano, etc.

3.2. User qualification
To install and maintain STDF system administrator have to have:

• skills equals to those, that are enough to successfully pass the LPIC-2 exam;

• some knowledge of Erlang language syntax to write ltering rules.

• read throughly a "STDF ltering rules language reference" manual (supplied by Teliota separately).

3.3. Installation process of components

3.3.1. Getting packages of components

All packages are to be downloaded from a Teliota distribution web server: https://
download.teliota.com .

4

https://download.teliota.com
https://download.teliota.com

Segmented Telemetry Data Filter

3.3.2. Installation of a coordinator component

To install a coordinator component:

1. Go the the top level installation directory.

2. Make a directory for coordinator's les:

$ mkdir stdf_coordinator

3. Change a directory to the recently created one:

$ cd stdf_coordinator

4. Download the package with a coordinator component:

$ wget https://download.teliota.com/bin/stdf_coordinator.tar.bz2

5. Untar coordinator component les:

$ tar -xjf stdf_coordinator.tar.bz2

6. Open conguration le config.ini in any text editor and set up the IP and port that coordinator
component should listen on:

COORDINATOR_SERVER_LISTEN_IP=192.168.2.53
COORDINATOR_SERVER_LISTEN_PORT=8860

7. Change directory the bin/ folder:

$ cd bin/

8. Check if the le stdf_coordinator.sh have an execution bit turned on.

9. Run the coordinator:

$./stdf_coordinator.sh

The coordinator is needed to be fed by ltering rules. The coordinator includes a separate language
parsing and debugging tool which validates a lter rule.

Note

It is assumed that you have ltering rules already written. If you haven't any rule written yet,
rst check the section Authoring ltering rules.

To deploy a ltering rule:

1. Check the ltering rule:

$./stdf_parser.sh -i [rulefile1]

2. If there are any output messages - read them carefully. These messages also saved within a log
le for the future analysis.

5

Segmented Telemetry Data Filter

3. Copy the rule le to a filter_rules directory within the coordinator installation:

$ cp [rulefile1] ../filter_rules

4. Open conguration le config.ini in any text editor and add recently copied le into the
coordinator's conguration le:

COORDINATOR_RULES_FILES=rulefile1,rulefile2

5. Restart the coordinator component:

$./stdf_coordinator.sh restart

3.3.3. Installation of a loadbalancer component

To install a loadbalancer component:

1. Change a current directory to the top level installation one.

2. Make a directory for the loadbalancer component les:

$ mkdir stdf_loadbalancer

3. Change a directory to the recently created one:

$ cd stdf_loadbalancer

4. Download the package with a loadbalancer component:

$ wget https://download.teliota.com/bin/stdf_loadbalancer.tar.bz2

5. Untar the loadbalancer component les:

$ tar -xjf stdf_loadbalancer.tar.bz2

6. Open conguration le config.ini in any text editor and point the loadbalancer to the
coordinator's IP address and port number:

COORDINATOR_SERVER_IP=192.168.2.53
COORDINATOR_SERVER_PORT=8860

7. Change directory to the bin/ folder:

$ cd ./bin

8. Check if the le stdf_loadbalancer.sh have an execution bit turned on.

9. Run the loadbalancer component:

$./stdf_loadbalancer.sh

3.3.4. Installation of a filtering component

To install a ltering component:

6

Segmented Telemetry Data Filter

1. Change a current directory to the top level installation one.

2. Make a directory for ltering component les:

$ mkdir stdf_node

3. Change a directory to the recently created one:

$ cd stdf_node

4. Download the package with a ltering component:

$ wget https://download.teliota.com/bin/stdf_node.tar.bz2

5. Untar the ltering component les:

$ tar -xjf stdf_node.tar.bz2

6. Open conguration le config.ini in any text editor and point the ltering component to the
coordinator's IP address and port number:

COORDINATOR_SERVER_IP=192.168.2.53
COORDINATOR_SERVER_PORT=8860

7. Change directory to the bin/ folder:

$ cd ./bin

8. Check if the le stdf_node.sh have an execution bit turned on.

9. Run the ltering component:

$./stdf_node.sh

10. Repeat above steps for all lter components are to be installed.

11. Start feeding data into the data interface of the loadbalancer component.

4. Authoring filtering rules

Note

This section only briey describes ltering rules structure. For a detailed information take a
look into the "STDF ltering rules language reference" manual (supplied separately).

Filtering rules are dened utilizing a ltering language that uses Erlang language syntax as a basis.

Each ltering rule includes three elements (so called "denitions"):

• data denition - describes nature of data to be ltered, including the pattern how the incoming data
can be recognized (e.g. port, input url, data header); the data denition assigns an identier to the
dataset so that the data correlation and lter rules can refer to it;

• correlation denition - describes how that data depends on itself or some other identied dataset;

• lter denition - describes what actions are to be taken for the data, when it arrives.

7

Segmented Telemetry Data Filter

5. Using and verifying filtered data
The ltering cluster appoints one of its nodes automatically as a forwarder, based on the load of the
servers. The forwarder collects the data from each ltering node, combines it into one stream, and
sends it to whatever server is designated as the nal receiver (destination).

Important

The ltering components (nodes) don't store any data - they only perform ltering. You have
to dene and congure the storage server beyond the STDF deployment that will perform any
and all database processing. A connection to a designated DB server is congured within a
coordinator component conguration le config.ini.

The forwarder can optionally inject additional data headers and trailers into the initial data block
for easier recognition of its nature - source transmitter/generator. The trailer may contain a CRC for
checking data integrity. The algorithm for the CRC is shown below:

def crc16(self, buff, crc = 0, poly = 0xa001):
 l = len(buff)
 i = 0
 while i < l:
 ch = buff[i]
 uc = 0
 while uc < 8:
 if (crc & 1) ^ (ch & 1):
 crc = (crc >> 1) ^ poly
 else:
 crc >>= 1
 ch >>= 1
 uc += 1
 i += 1
 return crc

crc_byte_high = (crc >> 8)
crc_byte_low = (crc & 0xFF)

6. Troubleshooting

6.1. Problem: no connection from a filter node to a coordinator

Possible reasons How to solve a problem
Any of coordinator's node IP settings of a lter
node are not correct or were not set.

Check for a correct IP and port numbers of lters.

Firewall rules don't allow lter packets to reach a
coordinator

Check if coordinator rewall settings (open ports
and IP rules) are correct.

Coordinator node is not running Check if coordinator is really running.

6.2. Problem: filtering node doesn't receive filtering rules

Possible reason How to solve a problem
Any of coordinator's node IP settings of a lter
node are not correct or were not set.

Check for a correct IP and port numbers (see above
problem's rst solution).

Errors in ltering language Check coordinator's log le for errors

8

Segmented Telemetry Data Filter

Possible reason How to solve a problem
Issues with network connectivity or software used Check coordinator's log le for errors; check node

rewall settings

6.3. Problem: filtering node doesn't receive data

Possible reason How to solve a problem
Loadbalancer is not running Check for errors in loadbalancer log les
Ports are close or ltered by rewall Check node rewall settings
There are no actual data received Check loadbalancer log le of transmitted data

6.4. Problem: loadbalancer doesn't receive any data

Possible reason How to solve a problem
Loadbalancer is not running Check if loadbalancer is running and check for

errors in loadbalancer's log les.
Ports are close or ltered by rewall Check loadbalancer rewall settings

6.5. Problem: Filter produces incorrect results

Possible reason How to solve a problem
Incorrect lter initial setup Run node with higher level of verbosity: start them

with ./stdf_node.sh -vvv and then check log
les for possible issues

Incorrect lter rules Run lter language parser and validate it's actual
syntax: run ./stdf_parser.sh --validate
[rulefile1]

A. Technology stack behind this sample document
The source les of this document:

• were completely written in DocBook/XML 5.11 format which is OASIS Standard2;

• were WYSYWYM-authored by using of XMLmind XML Editor3 version 7.3 by XMLmind Software4

installed on author's desktop running Debian GNU/Linux 10.11 (buster)5. Also author used Dia
Diagram Editor6 for diagrams.

• are freely available at Github as a docbook-samples project7;

• are distributed under Creative Commons License - for details see License.

To produce .fo le of this document the following software were used:

• The local copy of DocBook XSL Stylesheets v. 1.79.18 was used.

1 https://docbook.org/xml/5.1/
2 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=docbook
3 http://www.xmlmind.com/xmleditor/
4 http://www.xmlmind.com
5 https://www.debian.org/
6 http://dia-installer.de/
7 https://github.com/eduardtibet/docbook-samples
8 http://docbook.sourceforge.net/release/xsl/

9

https://docbook.org/xml/5.1/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=docbook
http://www.xmlmind.com/xmleditor/
http://www.xmlmind.com
https://www.debian.org/
http://dia-installer.de/
http://dia-installer.de/
https://github.com/eduardtibet/docbook-samples
http://docbook.sourceforge.net/release/xsl/
https://docbook.org/xml/5.1/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=docbook
http://www.xmlmind.com/xmleditor/
http://www.xmlmind.com
https://www.debian.org/
http://dia-installer.de/
https://github.com/eduardtibet/docbook-samples
http://docbook.sourceforge.net/release/xsl/

Segmented Telemetry Data Filter

• Author's customization layer of the above stylesheets that is now a docbook pretty playout9 project,
freely available at Github.

• xsltproc as an engine to produce .fo le from the DocBook source .xml le (xsltproc compiled
against libxml 20904, libxslt 10129 and libexslt 817).

To get the result .pdf le from a .fo le author used Apache FOP 2.310 engine with a foponts
project11, created and maintained by the author of this document.

B. License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License1.

9 https://github.com/eduardtibet/docbook-pretty-playout
10 http://xmlgraphics.apache.org/fop/
11 https://github.com/eduardtibet/foponts
1 https://creativecommons.org/licenses/by-nc-sa/4.0/

10

https://github.com/eduardtibet/docbook-pretty-playout
http://xmlgraphics.apache.org/fop/
https://github.com/eduardtibet/foponts
https://github.com/eduardtibet/foponts
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/eduardtibet/docbook-pretty-playout
http://xmlgraphics.apache.org/fop/
https://github.com/eduardtibet/foponts
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Segmented Telemetry Data Filter
	Table of Contents
	1. Introduction
	1.1. Scope of this document
	1.2. Document structure

	2. Description of the STDF
	2.1. Brief description of the STDF
	2.2. Overall design of STDF

	3. Installation of the software
	3.1. System requirements
	3.2. User qualification
	3.3. Installation process of components
	3.3.1. Getting packages of components
	3.3.2. Installation of a coordinator component
	3.3.3. Installation of a loadbalancer component
	3.3.4. Installation of a filtering component

	4. Authoring filtering rules
	5. Using and verifying filtered data
	6. Troubleshooting
	6.1. Problem: no connection from a filter node to a coordinator
	6.2. Problem: filtering node doesn't receive filtering rules
	6.3. Problem: filtering node doesn't receive data
	6.4. Problem: loadbalancer doesn't receive any data
	6.5. Problem: Filter produces incorrect results

	A. Technology stack behind this sample document
	B. License

